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Abstract. The intercombination line of Strontium at 689nm is successfully used in laser cooling to reach
the photon recoil limit with Doppler cooling in a magneto-optical traps (MOT). In this paper we present
a systematic study of the loading efficiency of such a MOT. Comparing the experimental results to a
simple model allows us to discuss the actual limitation of our apparatus. We also study in detail the final
MOT regime emphasizing the role of gravity on the position, size and temperature along the vertical and
horizontal directions. At large laser detuning, one finds an unusual situation where cooling and trapping
occur in the presence of a high bias magnetic field.

PACS. 3 9.25.+k

1 Introduction

Cooling and trapping alkaline-earth atoms offer interest-
ing alternatives to alkaline atoms. Indeed, the singlet-
triplet forbidden lines can be used for optical frequency
measurement and related subjects [1]. Narrow lines may
also be used, to tune the atom’s scattering length by op-
tical means [2]. Moreover, the spinless ground state of the
most abundant bosonic isotopes can lead to simpler or at
least different cold collisions problems than with alkaline
atoms [3]. Considering fermionic isotopes, the long-living
and isolated nuclear spin can be controlled by optical
means [4] and has been proposed to implement quantum
logic gates [5]. It has also been shown that the ultimate
performance of Doppler cooling can be greatly improved
by using narrow transitions whose photon recoil frequency
shifts ωr are larger than their natural widths Γ [6]. This
is the case for the 1S0 →3 P1 spin-forbidden line of Mag-
nesium (ωr ≈ 1100Γ ) or Calcium (ωr ≈ 36Γ ). Unfortu-
nately, both atomic species can not be hold in a standard
magneto-optical trap (MOT) because the radiation pres-
sure force is not strong enough to overcome gravity. For
Calcium, this issue has been circumvented using a quench-
ing laser as demonstrated in reference [7].

The natural width of the Strontium intercombination
transition (Γ = 2π × 7.5 kHz) is slightly broader than
the recoil shift (ωr = 2π × 4.7 kHz). The radiation pres-
sure force is higher than the gravity but at the same time
the final temperature is still in the µK range [8,9]. In
parallel, the narrow transition partially prevents multiple
scattering processes and the related atomic repulsive force
[10]. Hence important improvements on the spatial density

have been reported [8]. However, despite experimental ef-
forts, such as adding an extra confining optical potential,
pure optical methods have not allowed yet to reach the
quantum degeneracy regime with Strontium atoms [11,
12].

In this paper, we will discuss some performances, es-
sentially in terms of temperatures, sizes and loading rates,
of a Strontium 88 MOT using the 689 nm 1S0 →3P1 in-
tercombination line.

Initially the atoms are precooled in a MOT on the
spin-allowed 461 nm 1S0 →1P1 transition (natural width
Γ = 2π × 32 MHz) as discussed in [13]. Then the atoms
are transferred into the 689 nm intercombination MOT.
To achieve a high loading rate, Katori et al. [8] have used
laser spectrum, broadened by frequency modulation. Thus
the velocity capture range of the 689 nm MOT matches
the typical velocity in the 461 nm MOT. They report a
transfer efficiency of 30%. The same value of transfer effi-
ciency is also reported in reference [9]. In our set-up, 50%
of the atoms initially in the blue MOT are transferred into
the red one. In section 3 we present a systematic study
of the transfer efficiency as function of the parameters of
the frequency modulation. In order to discuss the intrin-
sic limitations of the loading efficiency, we compare our
experimental results to a simple model. In particular, we
demonstrated that our transfer efficiency is limited by the
size of the red MOT beams. We show that it could be op-
timized up to 90% with realistic laser power (25mW per
beams).

The minimum temperature achieved in the broadband
MOT is about 2.5 µK. In order to reduce the tempera-
ture down to the photon recoil limit (0.5 µK), we apply
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a second cooling stage, using a single frequency laser and
observe similar temperatures, detuning and intensity de-
pendencies as reported in the literature (see references [8],
[9], [14] and [15]). In those publications, the role of gravity
on the cooling and trapping dynamics along the z vertical
direction has been discussed. In this paper we compare
the steady state behavior along vertical (z) direction to
that in the horizontal plane (x − y) where gravity plays
indirectly a crucial role (section 4).

Details about the dynamics are given in references
[9],[14]. In particular the authors establish three regimes.
In regime (I) the laser detuning |δ| is larger than the
power-broadened linewidth ΓE = Γ

√
(1 + s). s is the

saturation parameter. Regime (II) on the contrary cor-
responds to ΓE > |δ|. In both regimes (I) and (II) ΓE À
Γ, ωr and the semiclassical limit is a good approximation.
In regime (III) the saturation parameter is small and a full
quantum treatment is required. We will focus here on the
semiclassical regime (I). In this regime, we confirm that
the temperature along the z direction is independent of
the detuning δ. Following Loftus et al. [14], we have also
found (see section 4.1) that this behavior is due to the bal-
ance of the gravitational force and the radiation pressure
force produced by the upward pointing laser (the gravity
defining the downward direction). The center of mass of
the atomic cloud is shifted downward from the magnetic
field quadrupole center. As a consequence, cooling and
trapping in the horizontal plane occur at a strong bias
magnetic field mostly perpendicular to the cooling plane.
This unusual situation is studied in detail (section 4.2).
Despite different friction and diffusion coefficients along
the horizontal and the vertical directions, the horizontal
temperature is found to be the same as the vertical one
(see section 4.3). In reference [14], the trapping potential
is predicted to have a box shape whose walls are given
by the laser detuning. This is indeed the case without a
bias magnetic field along the z axis. It is actually different
for the regime (I) described in this paper. Here we have
found that the trapping potential remain harmonic. This
leads to a cloud width in the horizontal direction which is
proportional to

√
|δ| (section 4.2).

2 Experimental set-up

Our blue MOT setup (on the broad 1S0 →1 P1 transi-
tion at 461 nm) is described in references [16,17]. Briefly,
it is composed by six intensity independent laser beams
typically 10 mW/cm2 each. The magnetic field gradient is
about 70 G/cm. The blue MOT is loaded from an atomic
beam extracted from an oven at 550 ◦C and longitudinally
slowed down by a Zeeman slower. The loading rate of our
blue MOT is of 109 atoms/s and we trap about 2.106 in
a 0.6mm rms radius cloud when no repumping lasers are
used [18]. To optimize the transfer into the red MOT,
the temperature of the blue MOT should be as small as
possible. As previously observed [13], this temperature de-
pends strongly on the optical field intensity. We therefore
decrease the intensity by a factor 5 4 ms before switching

off the blue MOT. The rms velocity right before the trans-
fer stage is thus reduced down to σb = 0.6 m/s whereas
the rms size remains unchanged. Similar two stage cooling
in a blue MOT is also reported in reference [15].

The 689 nm laser source is an anti-reflection coated
laser diode in a 10 cm long extended Littrow cavity, closed
by a diffraction grating. It is locked to an ULE cavity us-
ing the Pound-Drever-Hall technique [19]. The unity gain
of the servo loop is obtained at a frequency of 1 MHz.
From the noise spectrum of the error signal, we derive
a frequency noise power. It shows, in the range of inter-
est, namely 1 Hz−100 kHz, an upper limit of 160 Hz2/Hz
which is low enough for our purpose. The transmitted light
from the ULE cavity is injected into a 20 mW slave laser
diode. Then the noise components at frequencies higher
than the ULE cavity cut-off (300 kHz) are filtered. It is
important to note that the lateral bands used for the lock-
in are also removed. Those lateral bands, at 20 MHz from
the carrier, are generated modulating directly the current
of the master laser diode. A saturated spectroscopy set-up
on the 1S0 →3P1 intercombination line is used to compen-
sate the long term drift of 10− 50Hz/s mainly due to the
daily temperature change of the ULE cavity.

The slave beam is sent through an acousto-optical mod-
ulator mounted in a double pass configuration. The laser
detuning can then be tuned within the range of a few
hundreds of linewidth around the resonance. This acousto-
optical modulator is also used for frequency modulation
(FM) of the laser, as required during the loading phase
(see section 3).

The red MOT is made of three retroreflected beams
with a waist of 0.7 cm. The maximum intensity per beam
is about 4 mW/cm2 (the saturation intensity being Is =
3 µW/cm2). The magnetic gradient used for the red MOT
is varied from 1 to 10G/cm.

To probe the cloud (number of atoms and temper-
ature) we use a resonant 40 µs pulse of blue light. The
total emitted fluorescence is collected onto an avalanche
detector. From this measurement, we deduce the num-
ber of atoms and then evaluate the transfer rate into the
red MOT. At the same time, an image of the cloud is
taken with an intensified CCD camera. The typical spa-
tial resolution of the camera is 30 µm. Varying the dark
period (time-of-flight) between the red MOT phase and
the probe, we get the ballistic expansion of the cloud. We
then derive the velocity rms value and the corresponding
temperature.

3 Broadband loading of the red MOT

The loading efficiency of a MOT depends strongly on the
width of the transition. With a broad transition, the max-
imum radiation pressure force is typically am = vrΓ

2 ≈
104 × g, where vr is the recoil velocity [20]. Hence, on
l ≈ 1 cm (usual MOT beam waist) an atom with a veloc-
ity vc =

√
2aml ≈ 30m/s can be slowed down to zero and

then be captured. During the deceleration, the atom re-
mains always close to resonance because the Doppler shift
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is comparable to the linewidth. Thus MOTs can be di-
rectly loaded from a thermal vapor or a slow atomic beam
using single frequency lasers. Moreover typical magnetic
field gradients of few tens of G/cm usually do not dras-
tically change the loading because the Zeeman shift over
the trapping region is also comparable to the linewidth.

An efficient loading is more complex to achieved with
a narrow transition. For Strontium, the maximum radia-
tion pressure force of a single laser is only am ≈ 15 × g.
Assuming the force is maximum during all the capture
process, one gets vc =

√
2aml ≈ 1.7m/s. Hence, precool-

ing in the blue MOT is almost mandatory. In that case the
initial Doppler shift will be vcλ

−1 ≈ 2.5 MHz, 300 times
larger than the linewidth. In order to keep the laser on
resonance during the capture phase, the red MOT lasers
must thus be spectrally broadened. Because of the low
value of the saturation intensity, the spectral power den-
sity can easily be kept large enough to maintain a maxi-
mum force with a reasonable total power (few milliwatts).
The magnetic field gradient of the MOT may also affect
the velocity capture range. To illustrate this point, let us
consider an atom initially in the blue MOT at the center
of the trap with a velocity vc = 1.7m/s. During the decel-
eration, the Doppler shift decreases whereas the Zeeman
shift increases. However, the magnetic field gradient does
not affect the capture velocity as far as the total shift
(Doppler+Zeeman) is still decreasing. This condition is
fulfilled if the magnetic field gradient is lower than [21]:

bc =
am

λgeµbvc
≈ 0.6G/cm (1)

where ge = 1.5 is the Landé factor of the 3P1 level and
µb = 1.4MHz/G is the Bohr magneton. In practice we use
a magnetic field gradient which is larger than bc. In that
case, it is necessary to increase the width of the laser spec-
trum so that the optimum transfer rate is not limited by
the Zeeman shift (see section 3.2). An alternative solution
may consist of ramping the magnetic field gradient during
the loading [8].

In the following section (section 3.1), we briefly present
the experimental data regarding the loading efficiency of
the broadband red MOT from the blue one. In particular,
one fund, in a wild range of the broadband laser param-
eters, a maximum transfer efficiency of about 50% . The
experimental data are in good agreement with a simple
theoretical model develop in section 3.2. Hence one can
deduce the limiting factor of the transfer efficiency and
make some proposals to improve it. Finally the section
3.3 is devoted to the temperature of the broadband red
MOT.

3.1 Transfer rate: experimental results

To optimize the transfer rate, the laser spectrum is broad-
ened using frequency modulation (FM). Thus the instan-
taneous laser detuning is ∆(t) = δ+∆ν. sin νmt. ∆ν and νm

are the frequency deviation and modulation frequency re-
spectively, δ is the carrier detuning. Here, the modulation

index ∆ν/νm is always larger than 1, thus the so-called
wideband limit is well fulfilled. Hence the FM spectrum is
mainly enclosed in the interval [δ −∆ν; δ + ∆ν].

As shown in figure 1, the transfer rate increases with
νm up to 15 kHz where we observe a plateau at 45% trans-
fer efficiency. On the one hand when νm is larger than
the linewidth, the atoms are in the non-adiabatic regime
where they interact with all the Fourier components of the
laser spectrum. Moreover, the typical intensity per Fourier
component remains always higher than the saturation in-
tensity Is = 3 µW/cm2. As a consequence, the radiation
pressure force should be close to its maximum value for
any atomic velocity. On the other hand when νm < Γ/2π,
the atoms interact with a chirped intense laser where the
mean radiation pressure force (over a period 2π/νm) is
clearly smaller than in the case νm > Γ/2π. As a conse-
quence, the transfer rate is reduced when νm decreases.

In figure 2a, the transfer rate is measured as a func-
tion of ∆ν. The carrier detuning is δ = −1MHz and the
modulation frequency is kept larger than the linewidth
(νm = 25 kHz). Starting from no deviation (∆ν = 0), we
observe an increase of the transfer rate with ∆ν (in the
range 0 < ∆ν < 500 kHz). After reaching its maximum
value, the transfer rate does not depend on ∆ν anymore.
Thus the capturing process is not limited by the laser
spectrum anymore. If we further increase the frequency
deviation ∆ν, the transfer becomes less efficient and fi-
nally decreases again down to zero. This reduction occurs
as soon as ∆ν > |δ|, i.e. some components of the spectrum
are blue detuned. This frequency configuration obviously
should affect the MOT steady regime adding extra heating
at zero velocity (see section 3.3). We can see that it is also
affecting the transfer rate. To confirm that point, figure
2b shows the same experiment but with a larger detun-
ing δ = −1.5 MHz and δ = −2MHz. Again the transfer
rate decreases as soon as ∆ν > |δ|. The transfer rate is also
very small on the other side for small values of ∆ν. In that
case the entire spectrum of the laser is too far red detuned.
The radiation pressure forces are significant only for veloc-
ities larger than the capture velocity and no steady state
is expected. Keeping now the deviation fixed and varying
the detuning as shown in figure 3, we observe a maximum
transfer rate when the detuning is close to the deviation
frequency ∆ν ' |δ|. Closer to resonance (∆ν < |δ|), the
blue detuned components prevent an efficient loading of
the MOT.

The magnetic field gradient plays also a crucial role for
the loading. We indeed observe (figure 4) that the transfer
rate decreases when the magnetic field gradient increases.
At very low magnetic field (b < 1G/cm) the reduction
of the transfer rate is most likely due to a lack of stabil-
ity within the trapping region. In that case we actually
observe a strong displacement of the center of mass of
the cloud. This is induced by imperfections of the set-up
such as non-balanced laser intensities which are critical
at low magnetic gradient. Hence, the optimum magnetic
field gradient is found to be the smallest one which ensure
the stability of the cloud in the MOT.
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3.2 Theoretical model and comparison with the
experiments

To clearly understand the limiting processes of the transfer
rate, we compare the experimental data to a simple 1D
theoretical model based on the following assumptions:
- An atom undergoes a radiation pressure force and thus a
deceleration if the modulus of its velocity is between vmax

and vmin with

vmax = λ(|δ|+∆ν), vmin = max{λ(|δ|−∆ν); λ(−|δ|+∆ν)}
(2)

am = 0 elsewhere. We simply write that the Doppler shift
is contained within the FM spectrum. We add the condi-
tion vmin = λ(−|δ|+∆ν) when some components are blue
detuned ∆ν > |δ|. In this case, we consider the simple
ideal situation where the two counter-propagating lasers
are assumed perfectly balanced and then compensate each
other in the spectral overlapping region.
- Even in the semiclassical model, it is difficult to calculate
the acceleration as a function of the velocity for a FM spec-
trum. However for all the data presented here, the satura-
tion parameter is larger than one. Hence the deceleration
is set to a constant value − 1

3am when vmin < |v| < vmax.
The prefactor 1/3 takes into account the saturation by the
3 counter-propagating laser beam pairs.
- The magnetic field gradient is included by giving a spa-
tial dependence of the detuning δ in the expression (2).
- Initially the atoms are considered at the center of the
beam (no spatial dispersion) with the rms velocity of the
blue MOT, i.e. σb = 0.6m/s.
- An atom will be trapped if its velocity changes of sign
within a distance shorter that the beam waist.

In figures 2-4 the results of the model are compared to
the experimental data. The agreement between the model
and the experimental data is correct except at large fre-
quency deviation (figure 2) or at low detuning (figure 3).
In those cases the spectrum has some blue detuned com-
ponents. As mentioned before, this is a complex situation
where the assumptions of the simple model do not hold
anymore. Fortunately those cases do not have any prac-
tical interest because they do not correspond to the opti-
mum transfer efficiency.

The model suggests that the maximum transfer is lim-
ited by the beam waist (see caption of figures (2-4)). More-
over for all the situation explored in figures 2-3, the mag-
netic field gradient is strong enough (b = 1G/cm) to have
an impact on the capture process, as suggested by the
inequality (1). However it is not the transfer limiting fac-
tor because the Zeeman shift is compensated by a larger
frequency excursion or by a larger detuning.

The maximum velocity capture range found with the
model is about 0.75m/s where as the initial rms veloc-
ity distribution is σb = 0.6m/s. Hence any technic, such
as two photons cooling for example [22], which reduce
the blue MOT temperature may improve the transfer effi-
ciency. Increasing the beam waist would also improve the
transfer efficiency as showed in figure 5. If the saturation
parameter would remain large for all values of beam waist,

more than 90% of the atoms would be transferred for a
2 cm beam waist. 25 mW of power per beam should be suf-
ficient to achieve this goal. In our experimental set-up, the
power is limited to 3mW per beam. So the saturation pa-
rameter is necessarily reduced once the waist is increased.
To take this into account and get a more realistic estima-
tion of the efficiency for larger beams, we replace the pre-
vious acceleration by the expression −ams/(1 + 3s), with
s = I/Is the saturation parameter per beam per sideband.
In this case, the transfer efficiency becomes maximum at
70% for a beam waist of 1.5 cm.

One should also keep in mind, that with larger number
of atoms transferred into the red MOT, light assisted col-
lision may reduce the MOT lifetime and then the transfer
efficiency.

3.3 Temperature

Cooling with a broadband FM spectrum on the intercom-
biaison line decreases the temperature by three orders of
magnitude in comparison with the blue MOT: from 3mK
(σb = 0.6m/s) to 2.5 µK (see figure 6). For small detuning,
the temperature is strongly increasing when the spectrum
has some blue detuned components (∆ν > |δ|). Indeed the
cooling force and heating rate are strongly modified at the
vicinity of zero detuning. This effect is illustrated in figure
6. On the other side at large detuning (δ < −1.5MHz), the
temperature becomes constant. This regime corresponds
to a detuning independent steady state, as also observed
in single frequency cooling (see ref. [14] and section 4).

4 Single frequency cooling

About half of the atoms initially in the 461 nm MOT are
recaptured in the red one using a broadband laser. The fi-
nal temperature is 2.5 µK i.e. 5 times larger than the pho-
ton recoil temperature Tr = 460 nK. To further decrease
the temperature one has to switch to single frequency cool-
ing for about 80 ms. As we will see in this section, the
minimum temperature is now about 600 nK close to the
expected 0.8Tr in an 1D molasses [6]. Moreover, one has to
note that, under proper conditions described in reference
[14], the transfer between the broadband and the single
frequency red MOT can be almost lossless.

In the steady state regime of the single frequency red
MOT, one has kσv ≈ ωr ≈ Γ . Thus, there is no net sepa-
ration of different time scales as in MOTs operated with a
broad transition where ωr << kσv << Γ . However, here
the saturation parameter s always remains high. It cor-
responds to the so-called regimes (I) and (II) presented
in reference [14]. Thus ωr << Γ

√
1 + s and the semiclas-

sical Doppler theory describes properly the encountered
experimental situations.

To insure an efficient trapping, the parameter’s values
of the single frequency red MOT are different from a usual
broad transition MOT: The zeeman frequency shift due to
the magnetic field gradient is higher, typically 1000Γ/cm.
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Moreover the gravity is not negligible anymore by com-
parison with the typical radiation pressure. Those features
lead to an unusual behavior of the red MOT as we will ex-
plain in this section. We will first independently analyze
the MOT properties along the vertical dimension (section
4.1) then in the horizontal plane (section 4.2), to finally
compare those two situations (section 4.3).

4.1 Vertical direction

In the regime (I) i.e. at large negative detuning and high
saturation (see examples on figure 7a) the temperature is
indeed constant. As explained in reference [14], this be-
havior is due to the balance between the gravity and the
radiation pressure force of the upward laser. At large neg-
ative detuning, the downward laser is too far detuned to
give a significant contribution. In the semiclassical regime,
an atom undergoes a net force of

Fz = h̄k
Γ

2
s

1 + sT + 4(δ − geµBbz − kvz)2/Γ 2
−mg (3)

Considering the velocity dependence of the force, the first
order term is:

Fz ≈ −γzvz (4)

with

γz = −4
h̄k2δeff

Γ

s

(1 + sT + 4δ2
eff/Γ 2)2

(5)

where the effective detuning δeff = δ − geµBb < z > is
define such as

h̄k
Γ

2
s

1 + sT + 4δ2
eff/Γ 2

= mg (6)

s is the saturation parameter per beam where as sT is
the total saturation parameter including all the beams.
< z > is the mean vertical position of the cold cloud.
Hence δeff is independent of the laser detuning δ and the
vertical temperature at larger detuning depends only on
the intensity as shown in figures 7a and 7b.

The spatial properties of the cloud are also related to
the effective detuning δeff which is independent of δ. The
mean vertical position depends linearly on the detuning,
so that one has :

d < z >

d|δ| =
−1

geµBb
(7)

The predicted vertical displacement is compared to the
experimental data in figure 8a. The agreement is excellent
(the only adjustable parameter is the unknown origin of
the vertical axis). Because the radiation pressure force for
an atom at rest does not depend on the laser detuning δ,
the vertical rms size should be also δ-independent. This
point is also verified experimentally (see figure 8b).

4.2 x− y horizontal plane

Let us now study the behavior of the cold cloud in the x−y
plane at large laser detuning. As explained in section 4.1,
the position of the cloud is vertically shifted downward
with respect to the center of the magnetic field quadrupole
(see figure 9). The dynamic in the x− y plane occurs thus
in the presence of a high bias magnetic field. To derive
the expression of the semiclassical force in this unusual
situation one has first to project the circular polarizations
states of the horizontal lasers on the eigenstates. We define
the quantization axis along the magnetic field, one gets:

e+
x =

1 + sin α

2
e−B +

cos α√
2

πB +
1− sin α

2
e+
B (8)

e−x =
1− sin α

2
e−B +

cosα√
2

πB +
1 + sin α

2
e+
B (9)

where e−i , πi and e+
i represent respectively the left-handed,

linear and right-handed polarisations along the i axis. The
angle α between the vertical axis and the local magnetic
field is shown on figure 9. For large detuning, α is always
small (α ¿ 1 ) and we write α ≈ −x/ < z > considering
only the dynamics along the x dimension. For simplic-
ity the magnetic field gradient b is considered as spatially
isotropic with b > 0 as sketched on figure 9b. The expres-
sion of the radiation pressure force is then:

Fx = h̄k
Γ

2
×(10)

(
s(1− sin α)2/4

1 + sT + 4(δ − geµBb < z > (1− tan α)− kvx)2/Γ 2
−

s(1 + sin α)2/4
1 + sT + 4(δ − geµBb < z > (1− tan α) + kvx)2/Γ 2

)

Note that this expression is not restricted to the small α
values. We expect six terms in the expression (11): three
terms for each laser corresponding to the three e−B , πB

and e+
B polarisation eigenstates. However only two terms,

corresponding to the e+
B state, are close to resonance and

thus have a dominant contribution. As for the vertical
dimension, the off resonant terms are removed from the
expression (11). One has also to note that the effective
detuning δeff = δ − geµBb < z > is actually the same as
the one along the vertical dimension.

The first order expansion of (11) in α and kvx/Γ gives
the expression of the horizontal radiation pressure force:

Fx ≈ −καα− γxvx = −κxx− γxvx (11)

with

κα = − < z > κx = h̄k
Γ

2
s

1 + sT + 4δ2
eff/Γ 2

= mg (12)

and

γx =
γz

2
= −2

h̄k2δeff
Γ

s

(1 + sT + 4δ2
eff/Γ 2)2

(13)
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As for the vertical dimension (equation (6)), the force
depends on δeff but at the position of the MOT does not
depend on the laser detuning δ. Hence, at large detuning,
the horizontal temperature depends only on the intensity
as observed in figures 7a and 7b.

To understand the trapping mechanisms in the x − y
plane, we now consider an atom at rest located at a po-
sition x 6= 0 (corresponding to α 6= 0), i.e. not in the
center of the MOT. The transition rate of two counter-
propagating laser beam is not balanced anymore. This is
due to the opposite sign in the α dependency of the prefac-
tor in expression (11). This mechanism leads to a restoring
force in the x−y plane at the origin of the spatial confine-
ment (equation 11). Applying the equipartition theorem
one gets the horizontal rms size of the cloud:

x2
rms =

kBT

κx
= −< z > kBT

mg
(14)

Without any free adjusting parameter, the agreement with
experimental data is very good as shown in figure 8b. On
the other hand there’s no displacement of the center of
mass in the x − y plane whatever is the detuning δ as
long as the equilibrium of the counter-propagating beams
intensities is preserved (figure 8a).

4.3 Comparing the temperatures along horizontal and
vertical axes

As seen in sections 4.1 and 4.2, gravity has a dominant
impact on cooling in a MOT operated on the intercom-
bination line not only along the vertical axis but also in
the horizontal plane. Even so we expect different behav-
iors along this directions essentially because the gravity
renders the trapping potential anisotropic. This is indeed
the case for the spatial distribution (figures 8a and 8b)
whereas the temperatures are surprisingly the same (fig-
ures 7a and 7b). We will now give few simple arguments
to physically explain this last point.

In the semiclassical approximation, the temperature is
defined as the ratio between the friction and the diffusion
term:

kBTi =
γi

Dabs
i + Dspo

i

with i = x, y, z (15)

Dabs and Dspo correspond to the diffusion coefficients in-
duced by absorption and spontaneous emission events re-
spectively. The friction coefficients has been already de-
rived (equation 13):

γz = 2γx,y (16)

Indeed cooling along an axis in the x− y plane results in
the action of two counter-propagating beams four times
less coupled than the single upward laser beam. The same
argument holds for the absorption term of the diffusion
coefficient:

Dabs
z = 2Dabs

x,y (17)

The spontaneous emission contribution in the diffusion co-
efficient can be derived from the differential cross-section
dσ/dΩ of the emitting dipole [23]. With a strong biased
magnetic field along the vertical direction, this calcula-
tion is particularly simple as e+

z is the only quasi resonant
state. Hence

dσ/dΩ ∝ (1 + cos φ2) (18)

φ is the angle between the vertical axis and the direc-
tion of observation. The diffusion is then simply two times
stronger along the vertical axis φ = 0 than in the x − y
plane φ = π/2. More physically, the circular polarization
is exciting two out of phase dipole along x and y, they
both radiate in the vertical z direction whereas only one
them is radiating along x or y. We then find the following
contribution in the spontaneous emission diffusion coeffi-
cient:

Dspo
z = 2Dspo

x,y (19)

From those considerations, the temperature is expected
to be isotropic as observed experimentally (see figures 7a
and 7b).

In the so-called regime (I), the minimum temperature
is given by the semiclassical Doppler theory:

T = NR
h̄Γ

2kB

√
s (20)

Where NR is a numerical factor which should be close
to two [14]. This solution is represented in figure 7 by
a dashed line nicely matching the experimental data for
s > 8 but with NR = 1.2. Similar results, i.e. with unex-
pected low NR values, have been found in [14]. For s ≤ 8
we observed a plateau in the final temperature slightly
higher than the low saturation theoretical prediction [6].
We cannot explain why the temperature does not decrease
further down as reported in [14]. For quantitative compar-
ison with the theory, more detailed studies in a horizontal
1D molasses are required.

4.4 Conclusions

Cooling of Strontium atoms using the intercombination
line is an efficient technique to reach the recoil temper-
ature in three dimensions by optical methods. Unfortu-
nately loading from a thermal beam cannot be done di-
rectly with a single frequency laser because of the nar-
row velocity capture range. We have shown experimentally
that more than 50% of the atoms initially in a blue MOT
on the dipole-allowed transition are recaptured in the red
MOT using a frequency-broadened spectrum. Using a sim-
ple model, we conclude that the transfer is limited by the
size of the laser beam. If the total power of the beams
at 689 nm was higher, transfer rates up to 90% could be
expected by tripling our laser beam size. The final tem-
perature in the broadband regime is found to be as low
as 2.5 µK, i.e. only 5 times larger than the photon recoil
temperature. The gain in temperature by comparison to
the blue MOT (1−10mK) is appreciable. So in absence of
strong requirements on the temperature, broadband cool-
ing is very efficient and reasonably fast (less than 100 ms).
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The requirements for the frequency noise of the laser are
also much less stringent than for single frequency cooling.

Using a subsequent single frequency cooling stage, it
is possible to reduce the temperature down to 600 nK,
slightly above the photon recoil temperature. Analyzing
the large detuning regime, we particularly focus our stud-
ies on the comparison between vertical and horizontal di-
rections. We show how gravity indirectly influences the
horizontal parameters of the steady state MOT and find
that the trapping potential remains harmonic along all
directions, but with an anisotropy.

Gravity has a major impact on the MOT as it coun-
terbalances the laser pressure of the upward laser (making
the steady state independent of the detuning). We show
that gravity thus affects the final temperature, which re-
mains isotropic, despite different cooling dynamics along
the vertical and horizontal directions.

The results presented in this paper were done on the
Strontium 88. One can note that, cooling Strontium 87 is
a rather more complicate task because of the presence of
the nuclear spin [24]. For this reason we do not think that
our study on the single frequency cooling (section 4) can
be directly transposed to the Strontium fermionic isotope.
On contrary, the results on the broadband cooling (section
3) may be not affected by the change of isotope.
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Fig. 1. Transfer rate as a function of the modulation frequency.
The other parameters are fixed: P = 3 mW, δ = −1000 kHz,
b = 1G/cm and ∆ν = 1000 kHz
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Fig. 2. Transfer rate as a function of the frequency deviation
(squares). The laser detuning is δ = −1000 kHz for (a), δ =
−1500 kHz and δ = −2000 kHz for (b) higher and lower graph
respectively. The other parameters are fixed: P = 3mW, b =
1G/cm and νm = 25 kHz. The dash and solid line correspond
to a simple model prediction (see text). The transfer rate is
limited by the frequency deviation of the broad laser spectrum
for the dash line and by the waist of the MOT beam for the
solid line.
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Fig. 3. Transfer rate as a function of the detuning (squares).
The other parameters are fixed: P = 3 mW, ∆ν = 1000 kHz,
b = 1G/cm and νm = 25 kHz. The dashed and solid lines have
the same signification than in figure 2.
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Fig. 4. Transfer rate as a function of the magnetic gradient
(squares). The other parameters are fixed: P = 3mW, δ =
−1000 kHz, ∆ν = 1000 kHz and νm = 25 kHz. The transfer
rate is limited by the waist of the MOT beam for all values.
The dotted lines represent the case where the magnetic field
gradient do not affect the deceleration.
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Fig. 8. Displacement (a) and rms radius (b) of the cold cloud
in single frequency cooling along the z axis (star) and in the
x−y plane (circle). The intensity per beam is I = 20Is and the
magnetic gradient b = 2.5G/cm along the strong axis in the x−
y plane. The linear displacement prediction correspond to the
plain line (graph a). In graph b, the plain curve correspond to
the rms radius prediction based on the equipartition theorem.
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Fig. 9. (a) Images of the cold cloud in the red MOT. The cloud
position for δ = −100 kHz coincides roughly with the center of
the MOT whereas it is shifted downward for δ = −1000 kHz.
The spatial position of the resonance correspond dot circle.
(b) Sketch representing the large detuning case. The coupling
efficiency of the MOT lasers is encoded in the size of the empty
arrow. The laser form below has maximum efficiency whereas
the one pointing downward is absent because is too detuned.
Along a horizontal axis, the lasers are less coupled because
they do not have the correct polarization. The α angle is the
angular position of an atom M with respect to O, the center
of the MOT.


