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Abstract. We have performed a numerical study of multiple scattering in fractal aggregates
of different fractal dimensionsD. We have found a behaviour which does not correspond to
previous work on random media. Our theoretical approach allows us to understand the structure
of the backscattered intensity and shows that the coherent backscattering peak due to time-
reversal invariance is drowned in other types of interference.

1. Introduction

Over the past few years, fractal structures have been the subject of much attention [1, 2].
Fractal geometry has provided us with many well defined structures which may be used
either to represent real objects or to investigate the properties of well known methods in
physics [3].

The physical mechanism of aggregation often leads to sparse fractal clusters. One
model of aggregation which has been well studied is the diffusion-limited cluster–cluster
aggregation model [4, 5]. The fractal character means that each of the clusters is statistically
invariant under space dilation, or equivalently, that the average correlations in particle
positions inside the same cluster follow the power law. This fractality yields typical features
in the physical properties of such objects, but, owing to these long-range correlations, the
influence of the fractal structure on physical properties is generally non-trivial and difficult
to study.

There have been several studies [6, 7] on multiple scattering on fractal clusters, but
presently, none of them have dealt with the coherent backscattering cone. Jullien and Botet
have studied geometrical optics in fractals [8], but in this case, the radius of the particles
was much larger than the wavelength of the incident beam. An interesting study of coherent
backscattering of light in fractals has been done by Akkermanset al [9]. In their case, light
could only propagate from one particle to its nearest neighbours. In fractal aggregates which
are included in a transparent medium, light may exhibit a Levy flight behaviour [15].

On the other hand, multiple scattering in random media has been widely investigated
since the 1980s [10]. Most of the theory on coherent backscattering of light in random
media and its comparison to electronic wave multiple-scattering effects has been reported
recently by Lagendjiik and Van Tiggelen [11].

The physical phenomena leading to a coherent backscattering cone in a random medium
are now well known. But as a matter of fact, random media differ from fractal media as
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the latter have long-range correlation. So it seems logical to study the intensity of light in
the backward direction to see whether it remains such a peak for fractal systems.

In section 2, we present the numerical procedure for building our fractal aggregates
and for representing the interaction of light with these structures. In section 3, a theoretical
approach of the problem is made in order to explain the results (section 4). Finally, section 5
contains a discussion of the comparison between theory and numerical results. Section 6 is
the conclusion of the whole article.

2. Numerical procedure

2.1. Variable-D model

We have used a program written by Thouy and Jullien [12] to build aggregates of tunable
fractal dimension. It is a generalized cluster–cluster aggregation model which is hierarchical
in the sense that only clusters with the same number of particles can stick together. This
model has the great advantage of having the fractal dimensionD as an input parameter of the
program. The idea is to build a new cluster of 2m by sticking two clusters (built separately)
containing 2m−1 particles in order that the rate between the quadratic mean gyration radius
R and the distance between their centre of mass0 agrees with the relation

02 = 4(41/D − 1)R2+ δ2 (1)

Figure 1. Example of an aggregate composed of 1024 particles and of fractal dimension
D = 1.6.
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whereδ is the length of the lattice step. This relation ensures that the mean penetration
is adequate for the clusters to stick. Figure 1 represents an example of an aggregate with
fractal dimensionD = 1.6.

2.2. Multiple scattering in the aggregates

To model the interaction of the fractal cluster composed of particles of size�1 with an
incident monochromatic plane-wave fieldEinc, we have used the dipolar approximation,
which allows us to calculate the far and near electromagnetic field for a given local field
on the particle. If the wavelength of the incident radiation is much larger than the radius
r of the monomers, the dipolar theory can be applied to each of theN monomers of an
aggregate, whatever its size [13]. Let us suppose that this condition is fulfilled. The field
radiatedErad by such a dipole (Rayleigh scattering) simulated by the local incident field
Eloc is

Erad= k3 eikr
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where the dipolar momentp is connected to the local field by

p = ε0αEloc (3)

whereα is the polarizability. The unit vectorn is defined asr/r. In the multiple-scattering
regime, the local field is determined by the incident field and by the fields radiated by the
other dipoles. One can write a self-consistent equation for the fields:

Eloc(rj ) = Einc(rj )+
∑
l 6=j
Erad(rj − ri ) (4)

whererj is the position of thej th monomer. The set of equations (2)–(4) can be solved by
recursion. But, numerically, one has to be careful about the convergence of the expansion.
So, one may compute the field radiated at large distances from the sample.

In our simulation, we took the wavelength of lightλ to be equal to 1, so that the size
scale ofλ allows us to see the fractal correlations. A possible experimental set-up which
would correspond to our numerical simulation would be particles of size�1, which would
be embedded in a transparent matrix. The distances between neighbouring particles would
be∼1 and their correlation function would keep the fractal properties.

3. Theory

In random media, it is possible to estimate the half-width of the coherent backscattering peak
by calculating the mean-square displacement of light, if taken in the diffusion approximation
[14]. In fractal media, however, this calculation is more subtle since light exhibits anomalous
diffusive behaviour [15].

Generally, for multiple scattering, the phase difference between two optical paths, one
being the reciprocal of the other, is given by

φ = (ki + kf ) · (RN −R1). (5)
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This supposes two-wave interference. If we noteθ , the angle to the backward direction
and if we use the diffusion approximation, i.e.|RN −R1|2 = 〈R2〉 ∝ f (tN), wheref (tN)
is the behaviour of the mean-square displacement as a function of timetN and velocity of
light c = 1. So we obtain

φN ∝ kθf (tN) (6)

whereφN is the phase difference for a given timetN . So,

δθ ∝ 1

k

∑
N

1

f (tN)
(7)

is the half-width of the coherent backscattering peak. If the mean-square displacement
diverges, the half-width of the coherent backscattering peak tends to zero.

For fractal dimensions running between 2 and 3, it is possible to compute the long-
time behaviour of the mean-square displacement, using the so-called pore chord distribution
introduced by Mering and Tchoubar [16, 17]. The pore chord distribution may be defined
here as the number of segments linking two particle centres as a function of the segment
lengthr. Following their article, the pore chord distribution runs asr−D+1.

For instance, if the fractal dimension of the aggregate is 2< D < 3, the mean-square
displacement behaves as [15]:

〈r2(t)〉 = t2{1− (D − 1)−12
(
t/tmax

)(2−D) + [(2−D)/(D − 1)
](
t/tmax

)}
. (8)

If the fractal dimension of the aggregate runs between 1 and 2, the mean-square
displacement diverges as [15]t−2D+6.

If we use the diffusion approximation, we see that in fractal media the mean-square
displacement is no longer a constant and diverges with time. This time may be approximated
by a multiple of the aggregate size and thus has a limit in finite size clusters. But, theory
for random media predicts that the coherent backscattering peak has a width which runs as
the inverse of the mean-square displacement. So, the faster the mean-square displacement
diverges with time, the smaller is the peak half-width. This behaviour is the more obvious
for fractal dimensionsD < 2 where the mean-square displacement diverges ast−2D+6.

Another effect of this pore-chord distribution is related to the fractal dimensionD.
Indeed, the probability for two optical paths to have the same optical length without being
the reverse of each another may be computed by

rDr ′−D+1r ′′D (9)

in the double-scattering case. HererD and r ′′D are the probability to find two particles at
a distancer (respectivelyr ′′) from a given point inside the aggregate andr ′ is the distance
between the two particles inside the aggregate. For a random medium, this probability is a
constant but for a fractal aggregate it is easy to see that it increases with the aggregate size.
This effect decreases for multiple (i.e. more than double) scattering, as the probability for
two optical paths to have the same geometrical length is

r(1)Dr(2)−D+1 . . . r(n−1)−D+1r(n)D (10)
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in the case ofnth-order scattering. So the fractal correlations may induce scattered intensity
peaks which are not in the exact backward direction and which may not be washed out by
averaging. Moreover, fractal correlations may have a greater effect for fractal dimensionD

close to 3.

4. Results

In figure 2 the backscattered intensity for a random media is plotted. There is a distinct
peak for angleπ/2 in the backward direction. This is characteristic of the time-reversal
invariance in random media.

In figure 3(a), we plotted the backscattered intensity for fractal dimensionD = 1.6 and
for an aggregate of 1024 particles. The result is an average over 80 different samples. As
one may see, it remains a coherent backscattering peak in this case. This peak is even more
obvious in figure 3(b), where we plotted the backscattered intensity forD = 2.4 and for
the same number of particles.

As predicted in the previous paragraph, there is a size effect on the backscattered
intensity, so we have plotted this intensity in figures 4(a) and 4(b) for D = 1.6 andD = 2.4,
respectively with 16 384 particles. Obviously, the coherent backscattering peak no longer
remains forD = 1.6 and forD = 2.4, this peak is higher than twice the background
intensity. This behaviour is very different from random media. For these two figures, the
results are an average over 12 samples.

Finally, in figures 5(a) and (b), we show the evolution of the backscattered intensity
for two different wavelengths (λ = 10, 100) on 16 384 particles. Results are obtained after
averaging over 12 samples.

Figure 2. Backscattered intensity (in normalized units) versus the backward angle (in radians)
averaged over 80 samples with 1024 particles located randomly. The wavelength here isλ = 1.
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Figure 3. (a) Backscattered intensity (in normalized units) versus the backward angle (in radians)
averaged over 80 samples with 1024 particles andD = 1.6 and λ = 1. (b) Backscattered
intensity (in normalized units) versus the backward angle (in radians) averaged over 80 samples
with 1024 particles andD = 2.4 andλ = 1.

5. Discussion

As one may see in figures 3(a) and (b), the coherent backscattering peak exists for light
scattering on small fractal aggregates (in this case, there are 1024 particles in the aggregates).
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Figure 4. (a) Backscattered intensity (in normalized units) versus the backward angle (in radians)
averaged over 12 samples with 16 384 particles andD = 1.6 andλ = 1. (b) Backscattered
intensity (in normalized units) versus the backward angle (in radians) averaged over 12 samples
with 16 384 particles andD = 2.4 andλ = 1.

For D = 2.4 (figure 3(b)), the backscattered peak has an intensity which is smaller than
2 in normalized units. It corresponds to theory for random media which predicts that the
coherent backscattering peak has at most an intensity twice as large as the background
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Figure 5. (a) Backscattered intensity (in normalized units) versus the backward angle (in radians)
averaged over 12 samples with 16 384 particles andD = 2.4 andλ = 10. (b) Backscattered
intensity (in normalized units) versus the backward angle (in radians) averaged over 12 samples
with 16 384 particles andD = 2.4 andλ = 100.

one, as one may see in figure 2. In this case, i.e. for figures 3(a) and (b), due to size
effects, the divergence of the mean-square displacement is not very strong, so the half-
width of the coherent backscattering peak is non-zero. Indeed, the half-width of the coherent
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backscattering peak is inversely proportional to the mean-square displacement. The theory
for the mean-square displacement behaviour in fractal media predicts that it diverges, but
as the fractal aggregate on which the computation has been made has a finite size which
is relatively small, the mean-square displacement cannot overcome a threshold due to the
cluster size itself.

For fractal dimensionD = 2.4 (figure 3(b)) and for the random medium (figure 2), the
difference between the two coherent backscattering peaks is small. When one approaches the
fractal dimensionD = 3, i.e. the fractal dimension of a random medium, the mean-square
displacement has an upper limit (even if it diverges) which is very close to the constant
mean-square displacement of a random medium with the same size (1024 particles). This
explains the similarity between the backscattered intensities of figures 2 and 3(b).

ForD = 1.6, the divergence of the mean-square displacement is larger than forD = 2.4.
So the differences between the results given by figures 3(a) and 2 are not neglectable.
Furthermore, in figure 3(a), one may see in the splitting of the backscattering peak, the
effects of fractal correlations.

Let us examine figures 4(a) and (b). The fractal aggregates used for these figures are
anisotropic if they are constructed in a three-dimensional space. One may easily understand
that the closer the fractal dimension is to 2, the more the aggregates become geometrically
linear. In order to avoid the effects of this anisotropy; during computation we have rotated
these aggregates in all space directions and we have then computed the backscattered
intensity, this is analogous to constructing more aggregates. If we look at figure 4(a)
(scattered intensity on aggregates of 16 384 particles withD = 1.6), we can see that there
is no longer a visible coherent backscattering peak. In fact, the coherent backscattered
intensity due to time-reversal invariance still exists, but its half-width tends to zero due to
divergence of the mean-square displacement, so the coherent backscattering peak disappears.
Indeed, for this size of aggregates, the mean-square displacement has anomalous behaviour
which has a limit which is very large compared to the mean-square displacement for a
random medium of the same size. In this case (a large number of particles in the cluster
and small fractal dimension), the light has a Levy flight behaviour: either it is scattered
several times between close particles or it propagates between two particles which are very
far away from each other. So the mean-square displacement diverges and the coherent
backscattering peak narrows.

The backscattered intensity maximum in figure 4(b) has a magnitude which is larger
than three times the background intensity. This may be explained by the fact that the
interference due to fractal correlations is added to the interference due to time-reversal
invariance, i.e. several optical paths may have the same optical length without having the
same geometrical path. This phenomenon is not washed out by averaging and is more
obvious for an aggregate with fractal dimensionD = 2.4 than forD = 1.6 because (see
equation (9)) as aggregates with fractal dimensionD = 1.6 get close to a line, the number
of optical paths with the same length and different geometrical paths are less numerous.
The peaks near the angleθ = 0 are even larger than the one in the exact backward direction.
This indicates that fractal correlations have a greater effect than that due to time-reversal
invariance.

Finally, the effect of the wavelength is shown in figures 5(a) and (b). Figure 5(a)
is a computational result performed for the same aggregates as for figure 4(b) (i.e. with
D = 2.4). In fact, taking a larger wavelength is equivalent to taking a smaller aggregate
with the same wavelengthλ = 1. The final figure (figure 5(b)) which represents the scattered
intensity withλ = 100 on isolated aggregates, shows one large peak (which is due to fractal
correlations) but also has a shape which gets closer to the dipolar scattering one.
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6. Conclusion

We have shown here that due to the divergence of the mean-square displacement of light
in fractal aggregates, the half-width of the coherent backscattering peak tends to zero. This
effect is mostly visible for large fractal aggregates, as the mean-square displacement has
a threshold which is proportional to the aggregate size. Moreover, another effect which
differs from random media is the action of fractal correlations that leads to the presence of
other peaks, not only in the exact backward direction.

Two studies may now be carried out: the relationship between the backward intensity
and the correlations in the aggregate and an experimental study. The experimental procedure
would be to analyse backscattering on silica aerogels, which are known to be fractal objects
in a given domain.
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