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Searching for Anderson localization of light in three dimensions has challenged experimental and
theoretical research for the last decades. Here the problem is analyzed through large scale numerical
simulations, using a radiative Hamiltonian i.e. a non-Hermitian long-range hopping Hamiltonian,
well suited to model light-matter interaction in cold atomic clouds. Light interaction in atomic
clouds is considered in presence of positional and diagonal disorder. Due to the interplay of disorder
and cooperative effects (sub- and super-radiance) a novel type of localization transition is shown
to emerge, differing in several aspects from standard localization transitions which occur along the
real energy axis. The localization transition discussed here is characterized by a mobility edge along
the imaginary energy axis of the eigenvalues which is mostly independent from the real energy
value of the eigenmodes. Differently from usual mobility edges it separates extended states from
hybrid localized states and it manifest itself in the large moments of the participation ratio of
the eigenstates. Our prediction of a mobility edge in the imaginary axis, i.e. depending on the
eigenmode lifetime, paves the way to achieve control both in the time and space domain of open
quantum systems.

Introduction. The interplay of opening and disorder
in systems described by non-Hermitian Hamiltonians has
been at the center of interest in many research fields,
showing that non-Hermiticity can strongly affect the re-
sponse of a system to disorder, inducing many counter-
intuitive effects [1–11]. On the other side, Anderson lo-
calization [12] has been a beacon to understand closed
disordered systems and has been at the focus of an ever
increasing research community, ranging from condensed
matter to acoustics, optics, and ultra-cold matter waves
as well as quantum memories based on cold atoms [13–
21]. In the standard Anderson localization problem, an
excitation can tunnel to nearest-neighbor sites placed in
a regular lattice with disordered on-site energies (diag-
onal disorder). Depending on the value of the disorder
strength, a mobility edge can be present at a specific
energy: below this energy the eigenstates are localized,
while above they are delocalized.

Extending the concepts developed for Anderson local-
ization to open quantum systems still remains a chal-
lenge. Light has been an obvious candidate to study An-
derson localization of non-interacting waves, which has
triggered continuous efforts since the mid-80s [23–33]. So
far, Anderson localization of light in three dimensions

however has resisted experimental observation. It has
now been shown that pioneering experiments on Ander-
son localization of light [26–28] do not provide a signature
for the Anderson transition in three dimensions [29–33]
and the mere existence of an Anderson phase transition
for light had even been questioned [34, 35]. Localiza-
tion of light indeed presents many features which strongly
differ from the standard Anderson localization of closed
systems: i) in typical samples, scatterers have random
positions in a three-dimensional volume, leading to posi-
tional disorder, ii) light induces complex long-range hop-
ping between the sites, which in the case of two-level sys-
tems as scattering medium can lead to cooperative effects
such as Dicke sub- and superradiance [36–40], iii) the ex-
citation can escape from the system by photon emission,
thus placing the problem of localization of light within
the framework of open quantum systems. Both the long-
range nature of the hopping and the opening can strongly
affect the interplay of disorder and transport. Thus, the
possibility to have a transition to localization in such sys-
tems is highly non-trivial. Specifically, cooperativity can
affect the response of the system to disorder in a dras-
tic way: while superradiant states show robustness to
disorder [9, 10], in the subradiant subspace long-range
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FIG. 1. (Color online) Localized Subradiant Eigenstates. A
typical localized subradiant state for the scalar model and for
Γ = 0.094Γ0, E = 0.1Γ0 and a participation ratio PR2 ≈ 7
for the case W/(Γ0b0) = 0.4 and N = 6400, ρλ3 = 5 so that
b0 ≈ 17.3. Upper panel: Three-dimensional representation of
a localized eigenstate. The radius representing each atom is
proportional to its excitation probability |Ψj(r)|2, also coded
in color [22]. Lower panel: A localized eigenstate projected
on the x− y plane.

interaction is effectively shielded [41, 42] and signatures
of localization can emerge [6, 7, 41]. In this letter, we
shed new light on the problem of light localization in
resonant scattering media by combining the positional
disorder studied so far, with the initial ingredient of di-
agonal (on-site) disorder as considered by Anderson [12].
With the aid of large scale simulations of up to 50000
atoms relying on a well-known radiative non-Hermitian
Hamiltonian [43] able to take the vectorial nature of light
into account, we show that the playground of the prob-
lem of light localization lies in the complex eigenvalues of
the radiative Hamiltonian. Specifically, by analyzing the
generalized participation ratio (GPR) of the eigenstates,

a widely used figure of merit to study localization transi-
tions, we show that a drastic transition in the behaviour
of the GPR occurs at a specific imaginary energy value
(decay widths) of the eigenstates. Such transition shares
many analogies with what happens at real energy mobil-
ity edges and thus reveals the presence of a mobility edge
along the imaginary axis in such systems.

The Model. We model light scattering in a 3D cold
atomic cloud by considering N atoms randomly dis-
tributed inside a cube of volume V = L3, with a spa-
tial density ρ = N/L3. When considering the interaction
of atoms with the electromagnetic field, the full vecto-
rial character of light should be taken into account. We
will focus on atoms driven on a s → p dipole radiation
transition which can be characterized by three degener-
ate levels in the excited state (labelled as α = x, y, z),
each with a transition dipole moment (TDM) equal in
coupling strength and perpendicular to the others [35].
Thus we model each atom as a four-level system, with a
ground state |g〉 and three degenerate excited states |x〉,
|y〉 and |z〉. Corresponding TDM matrix elements are

〈α|~̂µ|g〉 = µêα, with α = x, y, z and the Cartesian unit
vectors defined as êα. The radiative hamiltonian Hvec

describing dipole-dipole coupling in the single excitation
approximation (see also [43]) is

Hvec =

N∑
n=1

∑
α∈{x,y,z}

(
En,α − i

Γ0

2

)
|n, α〉 〈n, α|

− Γ0

2

N∑
m,n=1
(m 6=n)

∑
α,β∈{x,y,z}

Vm,n,α,β |m,α〉 〈n, β| , (1)

where En,α are the atomic transition energies and Γ0 is
the radiative decay rate of a single atom. In Eq. (1),
|n, α〉 represents a quantum state where the nth atom is
excited in its αth state, while all the other atoms are in
their ground state. Interaction terms are non-Hermitian,
namely

Vm,n,α,β =
3

2
eik0rm,n

[(
1

k0rm,n
+

i

k20r
2
m,n

− 1

k30r
3
m,n

)
êα · êβ −

(
1

k0rm,n
+

3i

k20r
2
m,n

− 3

k30r
3
m,n

)
(êα · r̂m,n)(êβ · r̂m,n)

]
.

(2)

In Eq. (2), k0 = 2π/λ = E0/(h̄c) is the transition
wavenumber (where λ is the wavelength of the atomic
transition and E0 being the average single atomic tran-
sition energy E0 = 〈En,α〉, where the average is taken
over disorder realization. rm,n is the distance between

the mth and nth atom and r̂m,n is the unit vector joining
them. Together with the vectorial model we also consider
the scalar model [44]. Even though the latter approxi-
mation neglects polarisation effects, it is appropriate in
the dilute limit, where inter-atomic distances are larger
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than the optical wavelength λ, making near-field terms
decaying as 1/r3 negligible [22]. The effective Hamil-
tonian which governs the interaction of the atoms with
the electromagnetic field in the scalar approximation is
characterized by complex long-range hopping terms Vm,n
decreasing as 1/rm,n with the distance,

H =

N∑
n=1

(
En − i

Γ0

2

)
|n〉 〈n|−Γ0

2

N∑
m 6=n

Vm,n |m〉 〈n| , (3)

where the state |n〉 stands for the n−atom in the excited
state and all the other atoms being in the ground state,

while Vm,n =
exp(ik0rm,n)

k0rm,n
is the interaction between the

atoms at distance rm,n. The model in Eq. (3), known as
the scalar model, has been introduced first by Foldy [45]
and it has been used in several papers to describe cold
atomic clouds in the dilute limit [46]. Note that the vec-
torial model Hamiltonian has dimension 3N × 3N con-
trary to the scalar case which has dimension N×N . Thus
the scalar model allows us to investigate much larger sys-
tem sizes with better statistics. For both models we can
define the resonant mean free path l = 1/ρσ0 (in the inde-
pendent scattering approximation), where σ0 = 4π/k20 is
the resonant scattering cross section in a simplified scalar
model. Finally, we define the resonant optical thickness,
b0, as the ratio between the system size L and the mean
free path l. For the scalar model we have

b0 =
L

l
=

4πρ2/3N1/3

k20
, (4)

while for the vectorial model the resonant scattering cross
section is σ0 = 6π/k20 and the optical thickness thus has

to be corrected with respect to the scalar case : b
(vec)
0 =

(3/2)b
(scal)
0 .

Note that H contains both real and imaginary parts,
which takes into account that the excitation is not con-
served since it can leave the system by outgoing radia-
tion. Its complex eigenvalues E = E − iΓ/2 describe the
energies and line-widths (decay rates) of the eigenmodes
of the system. We stress that even in the dilute limit
ρλ3 � 1 we can have cooperative behaviour in the large
sample limit (L � λ), provided that the cooperativity
parameter is b0 � 1. In this regime cooperative effects
such as single-excitation sub- and superradiance become
relevant [38, 46, 47].

In addition to the positional disorder of the atoms as
studied previously [34, 35], we now introduce an addi-
tional random diagonal disorder term in the Hamiltonian,
which shifts the excitation energy of the atoms around
its avarege value E0. Such diagonal disorder terms have
not been given sufficient consideration in the context of
localization of light, as engineering such effects is diffi-
cult in typical condensed-matter samples. However in
cold atomic clouds, such on-site disorder can be realized
by applying a speckle field coupling the excited state to

FIG. 2. (Color online) Participation ratio in the complex
plane: The participation ratio PR = PRq=2 of the eigen-
states for the scalar model is shown in the complex plane
(Ek,Γ) of the complex eigenvalues for N = 283, ρλ3 = 5,
b0 ≈ 26.06 and W/(b0Γ0) = 0.3. Note that the horizontal
energy axis is shifted by E0. The critical width for the transi-
tion to localization [Eq. (7)] is indicated by the red horizontal
line. Note that Ek is the difference between the real part of
the eigenvalues and E0.

an auxiliary excited state with convenient detuning, in-
ducing thus random light shifts of the atomic resonances
without inducing dipole forces in the ground state. Fol-
lowing the approach of the Anderson model on a lat-
tice, we allow the site energies to fluctuate in the range
of [−W/2,+W/2], where W is the strength of disorder.
Ensemble averaging thus includes different realizations
of the random position of the atoms and of site disorder.
Within this model, we study both the eigenvalues as has
been done in [34, 35] as well as the eigenstates [48].

Localized Subradiant States. A striking illustration of
the existence of localized states is given in Fig. 1, where
we represent a typical localized subradiant eigenstate for
the scalar model. The upper panel of Fig. 1 shows a 3D
representation of a typical localized eigenstate, while the
lower panel of Fig. 1 shows the projection of the squared
wavefunction |ψ(r)|2 on the x − y plane. While for zero
diagonal disorder the vast majority of the states, which
can be both superradiant or subradiant, are fully delocal-
ized [22] for the spatial density considered, adding suffi-
cient diagonal disorder leads to localization of the longer-
lived subradiant states. We observe that the localized
peak, shown in the lower panel of Fig. 1, comes hand
in hand with an extended tail, thus exhibiting a hybrid
character, in agreement with Refs. [6, 7, 41]. We note
that the presence of such extended tails might strongly
affect transport properties [49], for instance suppressing
the exponential decay of transmission with the system
size. Here we focus on the structure of the eigenmodes,
leaving the analysis of the transport properties of subra-
diant localized states for a future work.

Mobility edge in the imaginary axis. In open systems,
standard approaches to study localization such as the
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FIG. 3. (Color online) Mobility edge in the imaginary axis. Typical GPR for q = 2 (panel a,b,c) and q = 5, 10 (panel
d) as a function of the decay width of the eigenstates are shown both for the vectorial (a,c) and scalar model (b,d) for
different number N of atoms and constant density, see legend. The vertical black dashed line indicates the critical width
[Eq. (7)]. In the insets the root mean square of ln(PRq) is shown as a function of the decay width of the eigenstates. In panels
(a,b,d), for each N the eigenvalues in the region −b0/4 < (E − E0)/Γ0 < b0/4 were considered, while in panel c)the region
−7− b0/4 < (E − E0)/Γ0 < 7 + b0/4 were considered.

Thouless parameter should be applied with care [50]. We
therefore analyze the properties of the generalized par-
ticipation ratio (GPR) of the eigenfunction ψ of the sys-
tem [51, 52],

PRq =

∣∣∣∣∣∑
i

|〈i|ψ〉|2
∣∣∣∣∣
q

/
∑
i

|〈i|ψ〉|2q. (5)

For localized eigenfunctions PRq is independent of the
system size for all q, while in the delocalized regime
PRq ∝ Nq−1. On the other hand, at the localization
transition the GPR diverges with N as

PRq ∝ NDq(q−1)/d (6)

where d is the embedding dimension and Dq defines
the fractal dimension. Moreover, the distribution
P (PRq/PR

typ
q ), where PRtypq = exp 〈ln(PRq)〉, is invari-

ant at criticality in the large system size limit. This im-
plies that the variance of the distribution P (ln(PRq)) is
independent of the size at criticality [53–60], allowing for
a precise identification of the critical point.

In order to have a general view of the localization prop-
erties of the eigenmodes of our system, we computed

the GPR of all the eigenmodes for a specific disorder
strength, and we plotted them as a function of their com-
plex eigenvalues (real and imaginary part). A typical ex-
ample of this analysis can be seen in Fig. 2, which shows
a strong dependence of the PR2 of the eigenmodes on the
imaginary part of their eigenvalues, while the dependence
on the real part is weak. Specifically we observe that the
smaller is their imaginary part, the more the eigenmodes
are localized. Note that the results of Fig. 2 refer to the
scalar model, and a similar figure for the vectorial model
can be found in [22]. These results are consistent with
previous findings about the interplay of super- and sub-
radiance with disorder [6, 7, 9, 10]: subradiant states are
the ones most affected by disorder. The most interesting
feature of this non-uniform response of the eigenmodes
to disorder can be seen if one analyzes the typical value
of PRq (PRtypq ) as a function of the decay widths. Since
the optical thickness b0 sets a relevant energy scale of
the system (i.e. the spectral energy broadening prior to
adding the diagonal disorder) [35], we considered differ-
ent systems at a constant density and for a fixed value of
the ratio W/(b0Γ0). The results are shown in Fig. 3, both
for the vectorial and the scalar model, for different sys-
tem sizes at constant density. The results clearly indicate
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FIG. 4. (Color online) Panel a), critical decay width: the
critical decay width for the localization transition is shown
as a function of the normalized disorder strength for different
densities and for both the vectorial and the scalar model (see
legend). The precision with which we determined the critical
decay width is always below ±0.015. Panel b): fractal dimen-
sion: the fractal dimension as a function of the normalized
decay width is shown for the case ρλ3 = 5, W/(b0Γ0) = 0.5.
The fractal dimension has been extracted from the size de-
pendence of the GPR for different values of q. The vertical
black dashed line indicates the critical width [Eq. (7)].

the presence of a transition in the behaviour of the GPR:
while the typical PRq of the eigenmodes is independent
of the system size below Γcr if W/b0 is kept fixed (see
vertical dashed line), it increases with the system size
above Γcr. These are precisely the same features present
when analyzing the GPR of the 3D Anderson model (or
other models displaying a localization transition) in cor-
respondence of a mobility edge in the real energy. Thus
our results points to the existence of a “mobility edge” in
the imaginary axis. We checked that the imaginary mo-
bility edge is independent of E around the band center,
as shown in Fig. 2 and further discussed in [22].

We note that in the large density limit the results
shown in Fig. 3(c) are extremely interesting, since they
indicate that in presence of diagonal disorder, a localiza-
tion transition can exist even in the large density limit for
the vectorial case in absence of any magnetic field. This

is at variance with what has been stated in [34] where no
diagonal disorder was considered. Moreover the mobil-
ity edge in the imaginary axis, even in the large density
limit, is well captured by Eq. (7).

In order to identify the critical decay width corre-
sponding to the imaginary mobility edge, we performed a
systematic analysis of the variance of the GPR vs the dis-
order strength W/Γ0 for different densities, system sizes
and ranges of decay widths. The variance of ln(PRq) has
been used in the literature to pinpoint the localization
transition and it has been shown that, at the localiza-
tion transition, the variance of ln(PRq) is independent
of the system size due to a universal distribution of the
GPR [55]. Similarly to Ref. [60], we use the crossing of
rms(lnPRq) close to its maximal value to locate the lo-
calization transition, see insets in Fig. 3. This allowed us
to identify a critical decay width Γcr.

We studied the critical decay widths as a function of
disorder for different densities. The results are shown in
Fig. 4(a). By fitting the numerical results we obtained
an expression for the critical decay width:

Γcr

Γ0
≈ 0.021 + 0.54

W

b0Γ0
. (7)

We note that the above expression cannot be extrapo-
lated at small values of disorder since in that case the
landscape of the GPR can only be understood analysing
the whole complex plane [22].

We have also analyzed the GPR for different q values:
q = 0.1, 0.6, 2, 5, 10 [22]. For q ≥ 2 we always find a
clear signature of a localization transition at a critical
decay width, while for small values of q a localization
transition is not observed. This reflects the hybrid na-
ture of the localized eigenstates: indeed together with a
localized peak, an extended tail is present. The GPR
for large values of q is more sensitive to large values of
|ψ|2, thus it describes the behaviour of the localized peak,
whereas the GPR for small values of q is sensitive to small
values of the wave function amplitudes and thus to the
wave function tails. Since the tails are always extended
(delocalized), no localization transition is seen for small
q [22]. In order to further confirm the above picture, we
have computed the fractal dimension Dq as a function of
the decay widths. The results are shown in Fig. 4(b). As
one can see for q ≥ 2 a transition in the fractal dimen-
sion is seen from zero to a value larger than one, while
for q < 1 no transition is observed, confirming the hybrid
nature of the eigenmodes of the system. Note that in the
extended phase, even for q = 2, 5, Dq is different from
d = 3 indicating that the wave function are never fully
extended. In other words, the eigenfunctions are always
multifractal both below and above criticality: Γcr marks
the transition from a frozen phase (where the the GPR
is independent of N for sufficiently large q), to a weakly
multifractal phase (with a narrow distribution of fractal
dimensions Dq) [61].
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Conclusions. We considered a well known radiative
non-Hermitian Hamiltonian model to describe coherent
multiple scattering of light in cold atomic clouds at low
excitation level. Our results give new insights on the
problem of localization in open quantum systems under
the interplay of non-Hermiticity and disorder. A novel
kind of localization transition has been identified, occur-
ring at a critical lifetime (or inverse decay rate Γ) of the
eigenmodes of the system, i.e. along the imaginary en-
ergy axis. A single-parameter scaling was found for the
critical decay rate Γcr/Γ0 [Eq. (7)] for the localization
transition, which is given by W/(b0Γ0), in contradiction
to what could be expected from ρ or b0 separately. The
localization transition identified here in a realistic model
of light matter interaction shares many analogies with
the Anderson transition in 3D lattices and with localiza-
tion transitions in long-range interacting systems, such as
in the power-banded random matrix model [55, 61], but
also important differences: the localization transition is
signalled by the behaviour of the GPR for large q values
(larger or equal than 2) and not for small q values (less
than 2). We attribute this feature to the fact that the
eigenmodes are not fully localized but that have a hybrid
character, with a localized peak and an extended tail.
A precise characterization of the shape of these eigen-
modes will be the topic of a future work. Despite these
differences, our results indicate the existence of a novel
kind of localization transition occurring along the imagi-
nary energy axis which is independent of the real energy
(around the band center) for sufficiently large values of
diagonal disorder and optical thickness. The existence of
a mobility edge in the imaginary axis found in this Letter
certainly constitutes a novel feature in the field of local-
ization in open quantum systems. Further research will
be necessary to assess the impact of our results. For in-
stance the general conditions for this mobility edge in the
imaginary axis to arise in open quantum systems should
be investigated both in the single excitation and many
excitation regime and for different topology and dimen-
sions and critical exponents determined. Our findings are
relevant not only from a fundamental point of view but
also for applications, e.g. to achieve efficient energy stor-
age, quantum memory, quantum simulation and sensing
devices.
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Celardo, Nano Letters 20, 7382 (2020).
[44] A. Cipris, R. Bachelard, R. Kaiser, and W. Guerin, Phys.

Rev. A 103, 033714 (2021).
[45] L. L. Foldy, Physical review 67, 107 (1945).
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4Université Côte d’Azur, CNRS, Institut de Physique de Nice, 06200 Nice, France

I. EXTENDED SUBRADIANT STATE

Here we show an example of a typical extended sub-
radiant state for the scalar model in absence of diago-
nal disorder [W/(b0Γ0) = 0], see Fig. S1. This figure
should be compared with Fig. 1 of the main text where
a typical localized subradiant state with W/(b0Γ0) = 0.4
is shown. Comparing the two figures one can see that
disorder in the transition frequencies of the atoms can
induce localized states in the subradiant subspace. Both
in Fig. S1 of this supplementary material and Fig. 1
of the main text, in the upper panels each atom is
shown by a small sphere. The probability |Ψj(r)|2 for
the eigenstate to be on that atom is given by the color
and the radius R of the sphere according to the relation
R(r) = 1.5(|Ψj(r)|2/|Ψj(r)|2max)2/7, where |Ψj(r)|2max is
the maximal probability for the case W/(b0Γ0) = 0.4.
This normalization relation was chosen to improve vis-
ibility. In the lower panels the projection on the x − y
plane of |Ψj(r)|2 on a grid of 60×60 is shown. To improve
the quality of the representation, each grid point has been
averaged by the surrounding points, with a weighting in-
versely proportional to their distances squared.

II. MOBILITY EDGE IN THE IMAGINARY
AXIS: SCALAR MODEL

In order to analyze the localization transition we con-
sider the typical value of the Generalized Participation
Ratio (GPR) of the eigenmodes of the system, see Eq. (5)
in the main text. We note that the eigenfunctions of the
non-Hermitian Hamiltonian represent the projection of
the total eigenfunctions on the single excitation manifold
of the atomic degrees of freedom. Thus the quantity |ψk|2
which is used to compute the PRq represents the condi-
tional probability to find the system on atom k, given
that one quantum of excitation is stored in the system.
The state |k〉 is the state where the atom k is excited
while all the other atoms are in the ground state.

In order to have a general view of the localization prop-
erties of the eigenmodes of our system, we computed the
GPR of all the eigenmodes for a specific value of the dis-
order, and we plotted them as a function of their complex
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FIG. S1. (Color online) Representations of a typical extended
subradiant state (for the scalar model) similar to Fig. 1 in the
main text. Upper panel: Three-dimensional representation of
an eigenstate. The radius representing each atom is propor-
tional to its excitation probability |Ψj(r)|2. Lower panel: An
eigenstate projected on the x−y plane. Here N = 6400, ρλ3 =
5 so that b0 ≈ 17.3 and W/(b0Γ0) = 0. For the state shown
in both panels we have E/Γ0 = −0.0758,Γ/Γ0 = 0.05. The
participation ratio PR2, defined in Eq. (5) of the main text,
of the state shown in this figure is PR2 = 1941.

eigenvalues (real and imaginary part). A typical example
of this analysis can be seen in Fig. S2(a), which shows a
strong dependence of the PR2 of the eigenmodes on the
imaginary part of their eigenvalues, while the dependence
on the real part is weak. Specifically we observe that the
smaller is their imaginary part, the more the eigenmodes
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FIG. S2. (Color online) Mobility edge in the imaginary axis. (a) Participation ratio PR = PRq=2 of the eigenstates in the
complex plane (E,Γ) of the eigenvalues of each state for N = 283, ρλ3 = 5, b0 ≈ 26.06 and W/(b0Γ0) = 0.5. Note that Ek is
the difference between the real part of the eigenvalues and E0. The critical width for the transition to localization [Eq. (7) in
the main text] is indicated by the red horizontal line. (b,c) Typical GPR for q = 2 (panel b) and q = 5 (panel c) as a function
of the decay width of the eigenstates for W/(b0Γ0) = 0.5, ρλ3 = 5. The vertical black dashed line indicates the critical width

[Eq. (7) in the main text]. In the insets the PRq/N
Dq(q−1)/d, where Dq is the fractal dimension computed at criticality, is

shown in the region around the localized-delocalized transition. (d) Participation ratio fluctuations. The root mean square of
ln(PR2) is shown as a function of the decay width of the eigenstates. The inset shows an enlargement of the same panel around
the transition. All panels refer to the case W/(b0Γ0) = 0.5, ρλ3 = 5 and different number N of atoms, see legend. In panels
(b,c,d), for each N the eigenvalues in the region −b0/8 < (E − E0)/Γ0 < b0/8 were considered.

are localized. We also analyzed the typical value of PRq
(PRtypq ) as a function of the decay widths for different
systems at a constant density and for a fixed value of the
ratio W/(b0Γ0). The results are shown in Fig. S2(b,c):
they clearly indicate a localization transition. While the
typical PRq of the eigenmodes is independent of the sys-
tem size below Γcr if W/(b0Γ0) is kept fixed (see vertical
dashed line), it increases with the system size above Γcr.
In order to identify the critical decay width correspond-
ing to the imaginary mobility edge, we performed a sys-
tematic analysis of the variance of the GPR vs. the dis-
order strength W/Γ0 for different densities, system sizes
and ranges of decay widths. The variance of ln(PRq) can
be used, see main text, to pinpoint the localization transi-
tion: we use the crossing of rms(lnPRq) close to its max-
imal value to locate the localization transition, see insets
in Fig. S2(d). This allowed us to identify a critical decay
width Γcr, see details in the main text. Using Eq. (5) in
the main text and performing a scaling analysis we can
determine the fractal dimension as a function of the decay
widths for different q values: Dq = d

q−1 ln(PRq)/ ln(N).

The rescaled typical GPR PRq/N
Dq(q−1)/3, where Dq is

the fractal dimension computed at criticality, is shown in
the insets of Fig. S2(b,c). As one can see the re-scaled
PRq nicely cross at the critical decay width.

In Fig. S3 the typical value of PRq is shown for dif-
ferent values of q for the case ρλ3 = 5,W/(b0Γ0) = 0.3.
As one can see a clear signature of a localized-delocalized
transition is shown for large values of q = 2, 5 (lower two
panels), while for small values of q = 0.1, 0.6, PRq in-
creases with the system size for all decays widths. As
discussed in the main text, in the open quantum system
considered here, localized eigenmodes have a hybrid na-
ture, with a localized peak and an extended tail. Small
q values are sensitive to the tails and thus reveal the ex-
tended character of the eigenmodes, while large q values
are more sensitive to the peak, thus revealing the local-
ized character of the eigenmodes. Note that even if the
PRq is never independent of the system size for small
q values, their dependence on the decay widths has a
change of slope in correspondence of the imaginary mo-
bility edge, see vertical dashed lines in the upper panels
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FIG. S3. (Color online) Mobility edge in the imaginary axis.
Typical generalized participation ratio for q = 0.1, 0.6, 2, 5 as
a function of the normalized decay width of the eigenstates for
W/(b0Γ0) = 0.3, ρλ3 = 5. Here the typical PRq is averaged
over the range −b0/20 < (E−E0)/Γ0 < b0/20+0.2. The ver-
tical black dashed line in all panels indicates the critical width
obtained from Eq. (5) in the main text. Different numbers of
atoms are considered: N = 103, 153, 203, 243, 283, 323, 363.
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FIG. S4. (Color online) Mobility edge in the imaginary axis.
Typical generalized inverse participation ratio for q = 2, 5, 10
as a function of the normalized decay width of the eigenstates
for W/(b0Γ0) = 0.8, ρλ3 = 5. Here the typical IPRq is aver-
aged over the range −b0/4 < (E −E0)/Γ0 < b0/4. The verti-
cal black dashed line in all panels indicates the critical width
obtained from Eq. (7) in the main text. Different numbers of
atoms are considered: N = 103, 153, 203, 243, 283, 323, 363.

in Fig. S3.
The mobility edge in the imaginary axis can be also an-

alyzed considering the generalized inverse participation
ratio (GIPR) of the eigenfunction ψ of the system,

IPRq =

∑
i |〈i|ψ〉|2q

|
∑
i |〈i|ψ〉|2|

q . (S1)

For localized eigenfunctions IPRq is independent of the
system size for all q, while in the delocalized regime
IPRq ∝ N1−q. In Fig. S4(a,b,c) the typical IPR is shown

FIG. S5. (Color online) Absence of a mobility edge in the
imaginary axis in absence of disorder for the scalar case. Par-
ticipation ratio PR = PRq=2 of the eigenstates (see legend
on the right) in the complex plane (E/Γ0,Γ/Γ0) of the eigen-
values of each state for N = 323, ρλ3 ≈ 5.05, b0 ≈ 30 and
W = 0. Note that Ek is the difference between the real part
of the eigenvalues and E0.

for q = 2, 5, 10, showing the mobility edge in the imagi-
nary axis with the same critical decay width as computed
in Eq. (7) in the main text, see vertical dashed line. In
Fig. S4(d) the root mean square of ln(IPRq) is shown for
different q values. As one can see our estimation for the
critical decay width (see vertical dashed line) indicates
fairly well the crossing of rms(ln(IPRq)) for different N
even if a slight difference between the crossing for q = 2
and q = 5, 10 is visible. A detailed investigation of this
effect is beyond the scope of this manuscript and it will
be investigated in future work. Note that the root mean
square of ln(IPRq) and ln(PRq) are the same since the
inverse participation ratio and the participation ratio are
just the inverse of each other.

Finally, it is important to note that our estimation
of the critical decay width as a function of the disorder
strength [Eq. (7) in the main text] cannot be extrapo-
lated to small values of disorder. Indeed for very small
disorder the mobility edge in the imaginary axis is not
defined, see Fig. S5. In general the playground for the lo-
calization of open quantum systems is the complex plane,
see Fig. S5, where the typical PRq=2 for the case of zero
disorder is shown in the complex plane. As one can see
comparing this figure with Fig. 2 of the main text and
with Fig. S2(a), for zero diagonal disorder no clear mo-
bility edge in the imaginary axis is present. On the other
side, one cannot exclude the presence of other mobility
edges along different boundaries in the complex plane
(this topic is outside the focus of the current manuscript
and it will be investigated in a future work).
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III. MOBILITY EDGE IN THE IMAGINARY
AXIS: VECTORIAL MODEL

When considering the interaction of atoms with the
electromagnetic field, the scalar model, see Eq. (3) in the
main text, is valid for dilute systems. In general the full
vectorial character of light should be taken into account.

Here we describe in detail the radiative hamiltonian
Hvec describing light-matter interaction in atomic-like
systems for weak fluence (single excitation approxima-
tion), see also [1]. We will focus on atoms driven on
a s → p dipole radiation transition which can be char-
acterized by three degenerate levels in the excited state
(labelled as α = x, y, z), each with a transition dipole
moment (TDM) equal in coupling strength and perpen-
dicular to the others [2].

Thus we model each atom as a four-level system, with
a ground state |g〉 and three degenerate excited states
|x〉, |y〉 and |z〉. Corresponding TDM matrix elements

are
〈
α
∣∣∣~̂µ∣∣∣ g〉 = µêα, with α = x, y, z and the Cartesian

unit vectors defined as êα.
To model cold atomic clouds, here we consider an en-

semble of atoms randomly placed in a 3D box (positional

disorder). Note that for the vectorial model the optical
thickness has to be modified with respect to the scalar

case, and we have: b
(vec)
0 = (3/2)b

(scal)
0 , where the opti-

cal thickness for the scalar case is given in Eq. (4) of the
main text. The Hamiltonian which takes the vectorial
nature of light into account, describing an ensemble of
atoms interacting with light can be written as [2]:

Hvec =

N∑
n=1

∑
α∈{x,y,z}

(
En,α − i

Γ0

2

)
|n, α〉 〈n, α|

− Γ0

2

N∑
m,n=1
(m6=n)

∑
α,β∈{x,y,z}

Vm,n,α,β |m,α〉 〈n, β| , (S2)

where En,α are the atomic transition energies and Γ0 is
the radiative decay rate of a single atom. In Eq. (S2),
|n, α〉 represents a quantum state where the nth atom is
excited in its αth state, while all the other atoms are in
their ground state. Interaction terms are non-Hermitian,
namely

Vm,n,α,β =
3

2
eik0rm,n

[(
1

k0rm,n
+

i

k20r
2
m,n

− 1

k30r
3
m,n

)
êα · êβ −

(
1

k0rm,n
+

3i

k20r
2
m,n

− 3

k30r
3
m,n

)
(êα · r̂m,n)(êβ · r̂m,n)

]
.

(S3)

In Eq. (S3), k0 = E0/(h̄c) is the transition wavenumber
(with E0 being the mean atomic transition energy E0 =
〈En,α〉), rm,n is the distance between the mth and nth
atom and r̂m,n is the unit vector joining them. Note that
this Hamiltonian has dimension 3N×3N contrary to the
scalar case which had dimension N ×N .

Using Eq. (S2) we have analyzed an ensemble of atoms
in a 3D box occupying random positions. Diagonal dis-
order has been also considered allowing the energies En,α
to fluctuate in the range of [W/2,+W/2], where W is the
strength of disorder. The typical values of the general-
ized participation ratio has been computed by computing
the probability of the excitation to be on every atom.

Fig. S6 shows the results for the vectorial case ρλ3 =
5,W/(b0Γ0) = 0.8. As one can see, clear signatures of the
mobility edge in the imaginary axis are shown for the typ-
ical value of PRq=2,5 and for rms(lnPRq=2,5). Note that
our estimation of the critical decay width corresponding
to the imaginary mobility edge given in Eq. (7) in the
main text is in very good agreement with the numerical
data, see vertical dashed lines in Fig. S6.

Now we turn our attention to the large density case,
where the full vectorial model is particularly relevant
since the scalar model is a good approximation only in

the dilute limit (small densities). It has been claimed
that, in absence of a magnetic field, localization is not
possible in the vectorial model of light [3]. Nevertheless,
here we show that, even in the large density limit, the in-
troduction of diagonal disorder induces a mobility edge
in the imaginary axis which is well captured by Eq. (7)
in the main text, see Figs. S7,S8.

On the other hand, in absence of disorder and for large
densities, the localized features of the eigenmodes of the
system are more complicated to capture. Again the real
playground is the complex plane, see Fig. S9. The possi-
bility to find localized states even in absence of diagonal
disorder, and in presence of positional disorder only, will
be investigated elsewhere.

IV. ON THE NATURE OF THE MOBILITY
EDGE IN THE IMAGINARY AXIS.

Usually in open Anderson models [4], the excitation
can escape the system only from the boundaries, so that
the decay widths are proportional to the probability of a
state to be on the boundaries. As a consequence of this,
most of the localized states also have very long lifetimes
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FIG. S6. (Color online) Mobility edge in the imaginary axis
for the vectorial case. Panel (a): The root mean square of
lnPRq for q = 2, 5 is shown as a function of the decay width
of the eigenstates for W/(b0Γ0) = 0.8, ρλ3 = 5. Panel b,c):
Generalized Participation ratio for q = 2 (panel b) and q = 5
(panel c) as a function of the decay width of the eigenstates for
W/(b0Γ0) = 0.8, ρλ3 = 5. Here the typical PRq is averaged
over the range −b0/4 < (E − E0)/Γ0 < b0/4. The vertical
black dashed line in all panels indicates the critical width
obtained from Eq. (7) in the main text. Data in all panels
refer to the vectorial model, see Eq. (S2).

FIG. S7. (Color online) Mobility edge in the imaginary axis
for the vectorial case. Participation ratio PR = PR2 of the
eigenstates (see legend on the right) in the complex plane
(E/Γ0,Γ/Γ0) of the eigenvalues of each state for N = 253,
ρλ3 = 40, and W/(b0Γ0) = 0.5. The horizontal red line indi-
cated the critical decay width, see Eq. (7) in the main text.
Note that Ek is the difference between the real part of the
eigenvalues and E0.

(similar to subradiant states), since their probability to
be on the boundaries is exponentially small. On the other
side, the model studied here, see also Ref. [5], strongly
differs from the previously studied models of localization
in open systems, since in our case the excitation can es-
cape from any site and not only from the boundaries. For
instance in our model a fully localized state on one site
has a decay width equal to Γ0, independent of the system
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FIG. S8. (Color online) Mobility edge in the imaginary axis
for the vectorial case. Panel (a,b): Typical generalized partic-
ipation ratio for q = 2 (panel a) and q = 5 (panel b) as a func-
tion of the decay width of the eigenstates. Panel (c,d): The
root mean square of lnPRq for q = 2, 5 is shown as a function
of the decay width of the eigenstates. Here the typical PRq is
averaged over the range −7− b0/4 < (E−E0)/Γ0 < 7 + b0/4.
All data refer to the case W/(b0Γ0) = 0.5, ρλ3 = 40. The
vertical black dashed line in all panels indicates the critical
width obtained from Eq. (7) in the main text. Data in all
panels refer to the vectorial model, see Eq. (S2).

FIG. S9. (Color online) Absence of a mobility edge in the
imaginary axis in absence of disorder for the vectorial case.
Participation ratio PR = PRq=2 of the eigenstates (see leg-
end on the right) in the complex plane E/Γ0,Γ/Γ0 of the
eigenvalues of each state for N = 253, ρλ3 = 40, and W = 0.
Note that Ek is the difference between the real part of the
eigenvalues and E0.

size.
In order to clarify the difference between our model and

previously studied open 3D Anderson models, let us con-
sider a 3D cubic Anderson model with leads connected
to one of its side as in Ref. [4]. Let us assume that the
disorder is such to create a mobility edge at energy Ec.
Clearly the decay width of the states will be very small
for E < Ec, while they will be large for energy E > Ec,
and correspondingly a mobility edge could also be found
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in the imaginary axis if one plots the participation ratio
PR2 vs the decay widths. But in this case to use E or Γ
is just a different way to label the states. On the other
side our mobility edge has a completely different nature
since it is independent of the real energy of the states
in a wide energy range around the energy center, and it
only depends on their imaginary energy, i.e. the lifetime
of the eigenmodes of the open system.

We note that the dependence of the PR2 on the
lifetime of the subradiant eigenmodes is a novel fea-
ture, which has not been captured by the toy model of
Refs. [6, 7]. Indeed, in the open 1D and 3D Anderson
model analyzed in Refs. [6, 7], the sub- and superradi-
ant modes were segregated in two regions, whereas in
the present case, no gap between sub- and superradiant
modes exists.

We also note that in the closed Anderson 3D model,
the PR2 diverges at a finite energy corresponding to the
mobility edge. In our case, the PR2 diverges at a fi-
nite decay width (corresponding to the imaginary part
of the complex eigenvalues of the system), thus we use
the term mobility edge in the imaginary axis in analogy
with the localization transition in closed systems which
occurs along the real axis. In the case of a closed system,
such as the standard Anderson model, the behavior of
the PR2 reflects the transport properties of a system in
a direct way: when the PR2 increases with the system
size, transmission will be diffusive or ballistic, while if
the PR2 is independent of the system size, transmission
is exponentially suppressed with the system size due to
localization. In the case of open systems, described by
a non-Hermitian Hamiltonian, the PR2 has a more in-
direct link to transport properties since the eigenmodes
are not fully localized but they have an hybrid nature as
discussed in the main text. A discussion of the transport
properties of hybrid states can be found in Ref. [9]. We
do not aim to discuss this further in this manuscript, we
just note that 1/(E − H) is the propagator for the ex-
citation in the system. For this reason, a change in the
structure of the eigenmodes of H as signaled by the PR2

represents a real physical change in the way excitations
propagate through the system.

For the model considered here, the increase of the PR2

with Γ might be explained by the increase of the mean
level spacing of the eigenvalues with Γ, see Fig. S10. Note
that in Fig. S10 we compute the mean level spacing in the
complex plane of the complex eigenvalues of the system.
Indeed perturbation theory in the case of non-Hermitian
Hamiltonian shows that it is the distance in the com-
plex plane which determines the strength of perturba-
tions [8, 10]. Moreover we checked that also the mean
level spacing in the real axis increases with the decay
width. The increase of the mean level spacing with the
decay width is due to the fact that superradiant states
have a stronger coupling to the photon field, so that their

energy spreads much more than subradiant states, which
are partially shielded from the interaction [11]. Thus for
a fixed amount of disorder, the states with lower Γ are
more easily mixed by disorder than the states with a
larger Γ. Nevertheless this argument cannot explain the
emergence of a mobility edge in the imaginary axis. More
work is needed to deepen the understanding of this novel
feature and to understand the general requirements for
the mobility edge in the imaginary axis to emerge.

We also note that a highy non-uniform mean level spac-
ing is typical for systems with long-range interactions.
For instance even a finite energy gap can be induced in
such systems [10, 11]. Localization even in presence of
long-range interactions has been discussed for subradi-
ant states in [6, 7] and in general, in the framework of a
shielding effect in [11, 12] and more recently in [13].

Finally we would like to point out that often in lit-
erature, localization properties are studied by means of
the Thouless parameter [3, 14]. The Thouless parameter
requires only the eigevalues of the system, nevertheless
it should be used with care in open systems. Indeed, in
presence of absorption or other sources of leakage, the
decay width of the states should be properly redefined
in order to take into account only the leakage from the
boundaries, see discussion in Ref. [15]. Thus, analyzing
the structure of the eigenmodes, as we did here, is a much
reliable mean to study localization in open quantum sys-
tems.
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FIG. S10. (Color online) Increase of the mean level spacing
with the widths. The mean level spacing in the complex plane
D is plotted vs the decay widths Γ (red circle) for the caseN =
3200, ρλ3 = 5 and W = 0. The mean level spacing has been
computed by counting the number of complex eigenvalues per
unit area in the complex plane for −0.1 < (E−E0)/Γ0 < 0.25
and different ranges of Γ. The mean level spacing D has been
obtained by taking the square root of the inverse density of
complex eigenvalues. Note that an increase of the mean level
spacing is observed even if one computes the distance in the
real energy axis of the complex eigenvalues.
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